Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Cell Death Discov ; 10(1): 176, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622121

RESUMO

Mitochondrial permeability transition (mPT)-mediated mitochondrial dysfunction plays a pivotal role in various human diseases. However, the intricate details of its mechanisms and the sequence of events remain elusive, primarily due to the interference caused by Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP). To address these, we have developed a methodology that utilizes nano-flow cytometry (nFCM) to quantitatively analyze the opening of mitochondrial permeability transition pore (mPTP), dissipation of mitochondrial membrane potential ( Δ Ψm), release of cytochrome c (Cyt c), and other molecular alternations of isolated mitochondria in response to mPT induction at the single-mitochondrion level. It was identified that betulinic acid (BetA) and antimycin A can directly induce mitochondrial dysfunction through mPT-mediated mechanisms, while cisplatin and staurosporine cannot. In addition, the nFCM analysis also revealed that BetA primarily induces mPTP opening through a reduction in Bcl-2 and Bcl-xL protein levels, along with an elevation in ROS content. Employing dose and time-dependent strategies of BetA, for the first time, we experimentally verified the sequential occurrence of mPTP opening and Δ Ψm depolarization prior to the release of Cyt c during mPT-mediated mitochondrial dysfunction. Notably, our study uncovers a simultaneous release of cell-death-associated factors, including Cyt c, AIF, PNPT1, and mtDNA during mPT, implying the initiation of multiple cell death pathways. Intriguingly, BetA induces caspase-independent cell death, even in the absence of Bax/Bak, thereby overcoming drug resistance. The presented findings offer new insights into mPT-mediated mitochondrial dysfunction using nFCM, emphasizing the potential for targeting such dysfunction in innovative cancer therapies and interventions.

2.
J Hazard Mater ; 469: 134003, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492394

RESUMO

In this study, we have effectively prepared a novel fluorescent probe named HDXM based on benzopyran derivatives for the ultrafast detection (within 3 s) of SO2 derivatives or biogenic amines. HDXM showed a noticeable color change after the addition of SO2 derivatives (from purple to colorless) or biogenic amines (from purple to blue), indicating that HDXM can identify two analytes with the naked eye. It is worth noting that HDXM can be used to detect SO2 derivatives in actual sugar samples, and to image HSO3-/SO32- in living cells. More importantly, sensing labels (HDXM-loaded filter paper or agarose hydrogel) enable real-time visual monitoring of salmon freshness through colorimetric and fluorescence dual channels. Compared with the Chinese national standard method, the sensing label is an effective tool for evaluating the freshness of fish. Benefiting from its excellent solubility and fluorescence performance, HDXM can be used as a versatile fluorescent material in various applications, including flexible films, glass coatings, impregnating dyes, printing, and fingerprint ink. HDXM is expected to be a promising and valuable multifunctional tool for food safety and fluorescent materials.


Assuntos
Aminas Biogênicas , Corantes Fluorescentes , Animais , Fluorescência , Alimentos Marinhos/análise , Carboidratos , Peixes
3.
Anal Chem ; 96(2): 810-820, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38173421

RESUMO

Monitoring mitochondrial esterase activity is crucial not only for investigating mitochondrial metabolism but also for assessing the effectiveness of mitochondrial-targeting prodrugs. However, accurately detecting esterase activity within mitochondria poses challenges due to its ubiquitous presence in cells and the uncontrolled localization of fluorogenic probes. To overcome this hurdle and reveal variations among different mitochondria, we isolated mitochondria and preserved their activity and functionality in a buffered environment. Subsequently, we utilized a laboratory-built nano-flow cytometer in conjunction with an esterase-responsive calcein-AM fluorescent probe to measure the esterase activity of individual mitochondria. This approach enabled us to investigate the influence of temperature, pH, metal ions, and various compounds on the mitochondrial esterase activity without any interference from other cellular constituents. Interestingly, we observed a decline in the mitochondrial esterase activity following the administration of mitochondrial respiratory chain inhibitors. Furthermore, we found that mitochondrial esterase activity was notably higher in the presence of a high concentration of ATP compared to that of ADP and AMP. Additionally, we noticed a correlation between elevated levels of complex IV and increased mitochondrial esterase activity. These findings suggest a functional connection between the mitochondrial respiratory chain and mitochondrial esterase activity. Moreover, we detected an upsurge in mitochondrial esterase activity during the early stages of apoptosis, while cellular esterase activity decreased. This highlights the significance of analyzing enzyme activity within specific organelle subregions. In summary, the integration of a nano-flow cytometer and fluorescent dyes introduces a novel method for quantifying mitochondrial enzyme activity with the potential to uncover the alterations and unique functions of other mitochondrial enzymes.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Mitocôndrias/metabolismo , Corantes Fluorescentes/química , Apoptose , Membranas Mitocondriais , Esterases/metabolismo
4.
Nanomedicine ; 56: 102720, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007067

RESUMO

Flow cytometry allows to characterize nanoparticles (NPs) and extracellular vesicles (EVs) but results are often expressed in arbitrary units of fluorescence. We evaluated the precision and accuracy of molecules of equivalent soluble fluorophores (MESF) beads for calibration of NPs and EVs. Firstly, two FITC-MESF bead sets, 2 and 6 um in size, were measured on three flow cytometers. We showed that arbitrary units could not be compared between instruments but after calibration, comparable FITC MESF units were achieved. However, the two calibration bead sets displayed varying slopes that were consistent across platforms. Further investigation revealed that the intrinsic uncertainty related to the MESF beads impacts the robust assignment of values to NPs and EVs based on extrapolation into the dim fluorescence range. Similar variations were found with PE MESF calibration. Therefore, the same calibration materials and numbers of calibration points should be used for reliable comparison of submicron sized particles.


Assuntos
Vesículas Extracelulares , Nanopartículas , Calibragem , Fluoresceína-5-Isotiocianato , Citometria de Fluxo/métodos , Corantes Fluorescentes
5.
Front Microbiol ; 14: 1278268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881248

RESUMO

Arcobacter was recognized as an emerging enteropathogen and controversies regarding its classification persisted. This study aimed to reevaluate the taxonomy of Arcobacter utilizing the 16S rRNA gene, 23S rRNA gene, single-copy orthologous genes, as well as genomic indices such as Average Nucleotide Identity (ANI) and in silico DNA-DNA hybridization (isDDH). The taxonomy of this genus was reevaluated in this study using multiple indices with a dataset of 371 genomes comprising 34 known species and 14 potentially new species. Good discrimination could be achieved only in some species but not for the species with higher sequence similarity using the comparisons of the 16S rRNA gene and 23S rRNA gene sequences. A high-accuracy phylogenomic approach for Arcobacter was established using 84 single-copy orthologous genes obtained through various bioinformatics methods. One marker gene (gene711), which was found to possess the same distinguishing ability as ANI, isDDH, and single-copy orthologous methods, was identified as a reliable locus for inferring the phylogeny of the genus. The effective species classification was achieved by employing gene711 with a sequence similarity exceeding 96%, even for species like A. cloacae, A. lanthieri, and A. skirrowii, which exhibited ambiguous classification using ANI and isDDH. Additionally, excellent subspecies categorizing among A. cryaerophilus could be distinguished using gene711. In conclusion, this framework strategy had the potential advantage of developing rapid species identification, particularly for highly variable species, providing a novel insight into the behavior and characteristics of Arcobacter.

6.
Angew Chem Int Ed Engl ; 62(44): e202309737, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37665693

RESUMO

Every year vast quantities of silver are lost in various waste streams; this, combined with its limited, diminishing supply and rising demand, makes silver recovery of increasing importance. Thus, herein, we report a controllable, green process to produce a host of highly porous metal-organic framework (MOF)/oligomer composites using supercritical carbon dioxide (ScCO2 ) as a medium. One resulting composite, referred to as MIL-127/Poly-o-phenylenediamine (PoPD), has an excellent Ag+ adsorption capacity, removal efficiency (>99 %) and provides rapid Ag+ extraction in as little as 5 min from complex liquid matrices. Notably, the composite can also reduce sliver concentrations below the levels (<0.1 ppm) established by the United States Environmental Protection Agency. Using theoretical simulations, we find that there are spatially ordered polymeric units inside the MOF that promote the complexation of Ag+ over other common competing ions. Moreover, the oligomer is able to reduce silver to its metallic state, also providing antibacterial properties.

7.
J Extracell Vesicles ; 12(8): e12351, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525378

RESUMO

Although lipophilic membrane dyes (LMDs) or probes (LMPs) are widely used to label extracellular vesicles (EVs) for detection and purification, their labelling performance has not been systematically characterized. Through concurrent side scattering and fluorescence detection of single EVs as small as 40 nm in diameter by a laboratory-built nano-flow cytometer (nFCM), present study identified that (1) PKH67 and PKH26 could maximally label ∼60%-80% of EVs isolated from the conditioned cell culture medium (purity of ∼88%) and ∼40%-70% of PFP-EVs (purity of ∼73%); (2) excessive PKH26 could cause damage to the EV structure; (3) di-8-ANEPPS and high concentration of DiI could achieve efficient and uniform labelling of EVs with nearly 100% labelling efficiency for di-8-ANEPPS and 70%-100% for DiI; (4) all the four tested LMDs can aggregate and form micelles that exhibit comparable side scatter and fluorescence intensity with those of labelled EVs and thus hardly be differentiate from each other; (5) as the LMD concentration went up, the particle number of self-aggregates increased while the fluorescence intensity of aggregates remained constant; (6) PKH67 and PKH26 tend to form more aggregated micelles than di-8-ANEPPS and DiI, and the effect of LMD self-aggregation can be negligible at optimal staining conditions. (7) All the four tested LMDs can label almost all the very-low-density lipoprotein (VLDL) particles, indicating potential confounding factor in plasma-EV labelling. Besides, it was discovered that DSPE-PEG2000 -biotin can only label ∼50% of plasma-EVs. The number of LMP inserted into the membrane of single EVs was measured for the first time and it was confirmed that membrane labelling by lipophilic dyes did not interfere with the immunophenotyping of EVs. nFCM provides a unique perspective for a better understanding of EV labelling by LMD/LMP.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Micelas , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122882, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207570

RESUMO

Reducing agent SO2 and oxidant H2O2 are two essential substances in cells, and the balance between them is closely related to the survival of cells. SO2 derivative HSO3- is often used as food additive. Therefore, simultaneous detection of SO2 and H2O2 is of great significance in biology and food safety. In this work, we successfully developed a mitochondria-targeted red fluorescent probe (HBTI), which has excellent selectivity, high sensitivity and large Stokes shift (202 nm). HBTI and HSO3-/SO32- undergo Michael addition on the unsaturated C=C bond, and the addition product (HBTI-HSO3-) can react with H2O2 to restore the conjugated structure. Fluorescence changes from red to non-emissive and then restores to red, and can be detected quickly and visually. In addition, HBTI has been successfully targeted mitochondria, and achieved dynamic reversible response to SO2/H2O2 in living cells, and has been successfully applied to detect SO2 in food samples.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Humanos , Fluorescência , Corantes Fluorescentes/química , Sulfitos/química , Células HeLa , Dióxido de Enxofre
9.
Front Microbiol ; 14: 1110720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007521

RESUMO

ST7 Staphylococcus aureus is highly prevalent in humans, pigs, as well as food in China; however, staphylococcal food poisoning (SFP) caused by this ST type has rarely been reported. On May 13, 2017, an SFP outbreak caused by ST7 S. aureus strains occurred in two campuses of a kindergarten in Hainan Province, China. We investigated the genomic characteristics and phylogenetic analysis of ST7 SFP strains combined with the 91 ST7 food-borne strains from 12 provinces in China by performing whole-genome sequencing (WGS). There was clear phylogenetic clustering of seven SFP isolates. Six antibiotic genes including blaZ, ANT (4')-Ib, tetK, lnuA, norA, and lmrS were present in all SFP strains and also showed a higher prevalence rate in 91 food-borne strains. A multiple resistance plasmid pDC53285 was present in SFP strain DC53285. Among 27 enterotoxin genes, only sea and selx were found in all SFP strains. A ФSa3int prophage containing type A immune evasion cluster (sea, scn, sak, and chp) was identified in SFP strain. In conclusion, we concluded that this SFP event was caused by the contamination of cakes with ST7 S. aureus. This study indicated the potential risk of new emergencing ST7 clone for SFP.

10.
J Agric Food Chem ; 71(13): 5283-5292, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946772

RESUMO

Herbaspirillum sp. ZXN111 and its mutants (Δacc, Δtyrb, and Δacc-tyrb), which show PGP activity on Zijuan, were tested for tea plants' colonization characteristics and the strain-dependent response of tea metabolites. The results showed that strain ZXN111 could widely colonize in different tea cultivars of Zijuan, Yunkang-10, Longjin 43, and Shuchazao, but with significant colonization preference to Zijuan, which might be ascribed to anthocyanins' chemotaxis. After 9 weeks of co-cultivation, l-theanine and theobromine in Zijuan leaves that were inoculated with wild-type ZXN111 were decreased, while theobromine, caffeine, and l-theanine that were inoculated with mutant Δacc were increased; especially l-theanine increased much significantly. Metabolomics analysis showed that tea metabolite profiling of inoculant groups was clearly separated from the control; therein, the flavanols were downregulated in ZXN111 and Δacc groups, but the l-theanine of the Δacc group was significantly upregulated compared to control and ZXN111 groups. These results indicated that strain ZXN111, especially of mutant Δacc, improved Zijuan tea flavor.


Assuntos
Camellia sinensis , Herbaspirillum , Camellia sinensis/genética , Camellia sinensis/metabolismo , Antocianinas/metabolismo , Teobromina/metabolismo , Chá/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
11.
Microbiol Spectr ; 11(3): e0274122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995237

RESUMO

The aim of this study was to investigate the transferability of acquired linezolid resistance genes and associated mobile genetic elements in an Enterococcus faecalis isolate QZ076, cocarrying optrA, cfr, cfr(D), and poxtA2 genes. MICs were determined by broth microdilution. Whole-genome sequencing (WGS) was performed using the Illumina and Nanopore platforms. The transfer of linezolid resistance genes was investigated by conjugation, using E. faecalis JH2-2 and clinical methicillin-resistant Staphylococcus aureus (MRSA) 109 as recipients. E. faecalis QZ076 harbors four plasmids, designated pQZ076-1 to pQZ076-4, with optrA located in the chromosomal DNA. The gene cfr was located on a novel pseudocompound transposon, designated Tn7515, integrated into the 65,961-bp pCF10-like pheromone-responsive conjugative plasmid pQZ076-1. Tn7515 generated 8-bp direct target duplications (5'-GATACGTA-3'). The genes cfr(D) and poxtA2 were colocated on the 16,397-bp mobilizable broad-host-range Inc18 plasmid pQZ076-4. The cfr-carrying plasmid pQZ076-1 could transfer from E. faecalis QZ076 to E. faecalis JH2-2, along with the cfr(D)- and poxtA2-cocarrying plasmid pQZ076-4, conferring the corresponding resistant phenotype to the recipient. Moreover, pQZ076-4 could also transfer to MRSA 109. To the best of our knowledge, this study presented the first report of four acquired linezolid resistance genes [optrA, cfr, cfr(D), and poxtA2] being simultaneously present in the same E. faecalis isolate. The location of the cfr gene on a pseudocompound transposon in a pheromone-responsive conjugative plasmid will accelerate its rapid dissemination. In addition, the cfr-carrying pheromone-responsive conjugative plasmid in E. faecalis was also able to mobilize the interspecies transfer of the cfr(D)- and poxtA2-cocarrying plasmid between enterococci and staphylococci. IMPORTANCE In this study, the simultaneous occurrence of four acquired oxazolidinone resistance genes [optrA, cfr, cfr(D), and poxtA2] was identified in an E. faecalis isolate of chicken origin. The association of the cfr gene with a novel pseudocompound transposon Tn7515 integrated into a pCF10-like pheromone-responsive conjugative plasmid will accelerate its dissemination. Moreover, the location of the resistance genes cfr(D) and poxtA2 on a mobilizable broad-host-range Inc18 family plasmid represents the basis for their intra- and interspecies dissemination with the aid of a conjugative plasmid and further accelerates the spreading of acquired oxazolidinone resistance genes, such as cfr, cfr(D), and poxtA2, among Gram-positive pathogens.


Assuntos
Infecções por Bactérias Gram-Positivas , Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Animais , Linezolida/farmacologia , Antibacterianos/farmacologia , Enterococcus faecalis/genética , Galinhas , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Cromossomos , Infecções por Bactérias Gram-Positivas/epidemiologia
12.
Anal Chem ; 95(6): 3423-3433, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36735936

RESUMO

Correlated analysis of multiple biochemical parameters at the single-particle level and in a high-throughput manner is essential for insights into the diversity and functions of biological nanoparticles (BNPs), such as bacteria and subcellular organelles. To meet this challenge, we developed a highly sensitive spectral nano-flow cytometer (S-nFCM) by integrating a spectral recording module to a laboratory-built nFCM that is 4-6 orders of magnitude more sensitive in side scattering detection and 1-2 orders of magnitude more sensitive in fluorescence detection than conventional flow cytometers. An electron-multiplying charge-coupled device (EMCCD) was used to acquire the full fluorescence spectra of single BNPs upon holographic grating dispersion. Up to 10,000 spectra can be collected in 1 min with 2.1 nm resolution. The precision, linearity, and sensitivity were examined. Complete discernment of single influenza viruses against the background signal, discrimination of different strains of marine cyanobacteria in a mixed sample based on their spectral properties of natural fluorescence, classification of bacterial categories exhibiting different patterns of antigen expression, and multiparameter analysis of single mitochondria for drug discovery were successfully demonstrated.


Assuntos
Nanopartículas , Mitocôndrias , Organelas
13.
J Extracell Vesicles ; 12(2): e12299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759917

RESUMO

Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes
14.
Hortic Res ; 10(1): uhac245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643747

RESUMO

Theanine, a unique and the most abundant non-proteinogenic amino acid in tea plants, endows tea infusion with the umami taste and anti-stress effects. Its content in tea correlates highly with green tea quality. Theanine content in new shoots of tea plants is high in mid-spring and greatly decreases in late spring. However, how the decrease is regulated is largely unknown. In a genetic screening, we observed that a yeast mutant, glutamate dehydrolase 2 (gdh2), was hypersensitive to 40 mM theanine and accumulated more theanine. This result implied a role of CsGDH2s in theanine accumulation in tea plants. Therefore, we identified the two homologs of GDH2, CsGDH2.1 and CsGDH2.2, in tea plants. Yeast complementation assay showed that the expression of CsGDH2.1 in yeast gdh2 mutant rescued the theanine hypersensitivity and hyperaccumulation of this mutant. Subcellular localization and tissue-specific expression showed CsGDH2.1 localized in the mitochondria and highly expressed in young tissues. Importantly, CsGDH2.1 expression was low in early spring, and increased significantly in late spring, in the new shoots of tea plants. These results all support the idea that CsGDH2.1 regulates theanine accumulation in the new shoots. Moreover, the in vitro enzyme assay showed that CsGDH2.1 had glutamate catabolic activity, and knockdown of CsGDH2.1 expression increased glutamate and theanine accumulation in the new shoots of tea plants. These findings suggested that CsGDH2.1-mediated glutamate catabolism negatively regulates theanine accumulation in the new shoots in late spring, and provides a functional gene for improving late-spring green tea quality.

15.
Anal Bioanal Chem ; 415(7): 1287-1298, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35945289

RESUMO

Extracellular vesicles (EVs) have emerged as an attractive drug delivery system owing to their natural roles in intercellular communication. On account of the large intrinsic heterogeneity of EVs, it is highly desirable to evaluate not only the encapsulation efficiency but also the alteration of biological functionality after the drug-loading process at the single-particle level. However, the nanoscale size of EVs poses a great challenge. Taking advantage of nano-flow cytometry (nFCM) in the multiparameter analysis of single EVs as small as 40 nm, six commonly used drug-loading strategies (coincubation, electroporation, extrusion, freeze-thawing, sonication, and surfactant treatment) were exploited by employing doxorubicin (Dox) as the model drug. Encapsulation ratio, EV concentration, drug content, and membrane proteins of Dox-loaded EVs were measured at the single-particle level. Our data indicated that coincubation and electroporation outperformed other methods with an encapsulation ratio of approximately 45% and a higher Dox content in single EVs. Interestingly, the labeling ratios of membrane proteins indicated that varying degrees of damage to the surface proteins of EVs occurred upon extrusion, freeze-thawing, sonication, and surfactant treatment. Confocal fluorescence microscopy and flow cytometry analysis revealed that Dox-loaded EVs prepared by electroporation induced the strongest apoptosis followed by coincubation. These results correlated well with their cellular uptake rate and fundamentally with the Dox encapsulation efficiency of single EVs. nFCM provides a rapid and sensitive platform for single-particle assessment of drug-loading strategies for incorporating drugs into EVs.


Assuntos
Vesículas Extracelulares , Preparações Farmacêuticas/metabolismo , Vesículas Extracelulares/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Eletroporação/métodos , Tensoativos
16.
Food Chem ; 407: 135031, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473352

RESUMO

Preservative sulfur dioxide (SO2) and bleach hydrogen peroxide (H2O2) were widely used in the food industry, at the same time, they were also a redox pair in biological systems. Therefore, the reversible sensing SO2/H2O2 was of great significance in food safety and biology. In this paper, a colorimetric and NIR fluorescent dual channels response probe (DCA-Bba) for SO2/H2O2 based on chromene-barbiturate was developed. DCA-Bba exhibited a rapid and sensitive recognition of SO2, and the adduct DCA-Bba-HSO3- could detect H2O2 in PBS (with 10 % DMSO, v/v, pH 7.4) solution. The reversible response of DCA-Bba was implemented by HSO3- involved 1,4-addition and H2O2 induced elimination reaction. DCA-Bba showed a strong red fluorescence based on the intramolecular charge transfer (ICT) process, after the recognition of SO2, the fluorescence of the adduct was quenched based on the photoinduced electron transfer (PET) process. And importantly, DCA-Bba had been applied for imaging SO2/H2O2 redox cycles in living cells, as well as could detect the levels of SO2 in white sugar, biscuit, Chinese liquor and red wine samples.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/química , Corantes Fluorescentes/química , Colorimetria/métodos , Células HeLa , Oxirredução , Dióxido de Enxofre/química
17.
Anal Chem ; 94(50): 17634-17644, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36474427

RESUMO

Protein aggregation is one of the greatest challenges in biopharmaceuticals as it could decrease therapeutic efficacy, induce immunogenicity, and reduce shelf life of protein drugs. However, there lacks high-throughput methods than can count and size protein aggregates in the nanometer size range, especially for those smaller than 100 nm. Employing a laboratory-built nano-flow cytometer (nFCM) that enables light scattering detection of single silica nanoparticles as small as 24 nm with sizing resolution and accuracy comparable to those of electron microscopy, here, we report a new benchmark to analyze single protein aggregates as small as 40 nm. With an analysis rate of up to 10,000 particles/min, the size distribution and particle concentration of nanometer protein aggregates can be acquired in 2-3 min. Employing heat-induced aggregation of bovine serum albumin (BSA) at high concentrations as the model system, effects of different categories of excipients, including sugars, polyols, salts, and amino acids on the inhibition of protein aggregation were investigated. Strikingly enough, as high as 1010 to 1012 particles/mL of protein aggregates were observed in the size range of 40 to 200 nm for therapeutic proteins of human serum albumin injection, reconstituted recombinant human interieukin-2 solution, and human immunoglobulin injection. nFCM opens a new avenue to count and size nanometer protein aggregates, suggesting its future usability in the quality assessment and formulation promotion of therapeutic proteins.


Assuntos
Produtos Biológicos , Nanopartículas , Humanos , Agregados Proteicos , Soroalbumina Bovina/química , Albumina Sérica Humana , Tamanho da Partícula
18.
Front Microbiol ; 13: 874658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419427

RESUMO

Rapid and accurate identification of foodborne pathogenic bacteria is of great importance because they are often responsible for the majority of serious foodborne illnesses. The confocal Raman microspectroscopy (CRM) is a fast and easy-to-use method known for its effectiveness in detecting and identifying microorganisms. This study demonstrates that CRM combined with chemometrics can serve as a rapid, reliable, and efficient method for the detection and identification of foodborne pathogenic bacteria without any laborious pre-treatments. Six important foodborne pathogenic bacteria including S. flexneri, L. monocytogenes, V. cholerae, S. aureus, S. typhimurium, and C. botulinum were investigated with CRM. These pathogenic bacteria can be differentiated based on several characteristic peaks and peak intensity ratio. Principal component analysis (PCA) was used for investigating the difference of various samples and reducing the dimensionality of the dataset. Performances of some classical classifiers were compared for bacterial detection and identification including decision tree (DT), artificial neural network (ANN), and Fisher's discriminant analysis (FDA). Correct recognition ratio (CRR), area under the receiver operating characteristic curve (ROC), cumulative gains, and lift charts were used to evaluate the performance of models. The impact of different pretreatment methods on the models was explored, and pretreatment methods include Savitzky-Golay algorithm smoothing (SG), standard normal variate (SNV), multivariate scatter correction (MSC), and Savitzky-Golay algorithm 1st Derivative (SG 1st Der). In the DT, ANN, and FDA model, FDA is more robust for overfitting problem and offers the highest accuracy. Most pretreatment methods raised the performance of the models except SNV. The results revealed that CRM coupled with chemometrics offers a powerful tool for the discrimination of foodborne pathogenic bacteria.

19.
Colloids Surf B Biointerfaces ; 220: 112941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270138

RESUMO

Multi-functional small molecules attached to an electrode surface can bind non-covalently to the redox enzyme fructose dehydrogenase (FDH) to ensure efficient electrochemical electron transfer (ET) and electrocatalysis of the enzyme in both mediated (MET) and direct (DET) ET modes. The present work investigates the potential of exploiting secondary, electrostatic and hydrophobic interactions between substituents on a small molecular bridge and the local FDH surfaces. Such interactions ensure alignment of the enzyme in an orientation favourable for both MET and DET. We have used a group of novel synthesized anthraquinones as the small molecule bridge, functionalised with electrostatically neutral, anionic, or cationic substituents. Particularly, we investigated the immobilisation of FDH on a nanoporous gold (NPG) electrode decorated with the novel synthesised anthraquinones using electrochemical methods. The best DET-capable fraction out of four anthraquinone derivatives tested is achieved for an anthraquinone functionalised with an anionic sulphonate group. Our study demonstrates, how the combination of chemical design and bioelectrochemistry can be brought to control alignment of enzymes in productive orientations on electrodes, a paradigm for thiol modified surfaces in biosensors and bioelectronics.


Assuntos
Técnicas Biossensoriais , Desidrogenases de Carboidrato , Antraquinonas , Desidrogenases de Carboidrato/química , Desidrogenases de Carboidrato/metabolismo , Eletrodos , Transporte de Elétrons , Elétrons , Enzimas Imobilizadas/química , Frutose/química , Frutose/metabolismo
20.
Anal Chem ; 94(41): 14299-14307, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36084271

RESUMO

The refractive index (RI) is a fundamental physical property of materials. Although measurement of the RI of biological nanoparticles (BNPs) in aqueous media is of great importance to basic research and biomedical applications, it is hampered by their tiny size, large intrinsic heterogeneity, and weak scattering. Here, we report the development of a label-free technique that can determine the RI of individual viruses and small extracellular vesicles (sEVs) with high precision and an analysis rate up to 10 000 particles per minute. This was achieved via the combination of high-sensitivity light-scattering detection by nanoflow cytometry (nFCM) and the Mie theory calculation. With the measured RIs for T7 virions, T7 capsids, and sEVs, the concentrations of nucleic acid in viral particles and protein in the lumen of sEVs were estimated. Furthermore, building upon a simplified core-shell model, the RIs of sEVs ranging from 40 to 200 nm were obtained. By using these RIs, a statistically robust size distribution of sEVs was acquired in minutes with accuracy and resolution matched closely with those of cryo-TEM measurements. Our approach could become an important tool in the RI determination of single BNPs.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Vírus , Citometria de Fluxo/métodos , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...